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QARTA leverages big spatio-temporal data
and machine learning, to build a map engine
that understands routes, traffic, and drivers.

+4%
Accuracy

-70%
Pricing

Fleet-aware
Car | buses | motorcycles



Services: https://qarta.io

● In-traffic navigation 
● Travel time estimation
● Complex route planning
● OD matrices

I’m here!

Taxi DispatchingFare estimation

Routing

2M requests/week

1M GPS point/day

QARTA in production

All 4k taxis in Qatar

3k delivery motorbikes

https://qarta.io/routing


General Architecture
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DL (I): Rule-based Data Cleaning

■ Deployed Rules in QARTA
❑ Trajectories with a stop

� Split the trajectory
❑ Unrealistic points

� Remove the point
❑ Missing points

� Split the trajectory

Existing efforts for data cleaning 
and wrangling do not support 
spatial and spatio-temporal data



DL(II): Trajectory Imputation

t1 t2

t3

t4

t5 t6 t7 t8 t9 t10

Low sampling rates
- ~400m
- Save energy & bandwidth

Need densification
- Use the wisdom of the crowd to 

impute each trajectory



General Architecture: MapMaking Layer
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MM Layer (I): Edge weights

8am

5pm

4am

Each trip: di ≈ w(e1) + w(e2) + … + w(ek)

Solve system of equations
Σi[w(e1) + w(e2) + ... + (ek) - di]2

Introduce constraints with Ridge Reg.



MM Layer (II): Metadata imputation
● Need rich metadata (annotation) for 

road networks
○ Speed limit
○ Number of lanes
○ Road type
○ ...

● Metadata inference in QARTA is 
framed as a supervised learning 
problem

○ Step 1: Find the best models that would 
map road features to certain metadata

○ Step 2: Use these models to predict the 
missing metadata values

Public maps have very poor 
metadata coverage



General Architecture: Calibration
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Cal. Layer (I) : Estimated time of arrival  
Important for:
- Route planning
- Logistics | Deliveries
- Fare estimation 

Depends on:
- Time | Location
- Route
- Vehicle type
- Weather

OSRM Google Maps

Can we learn the per-trip ETA offset
(error) distribution for each map service, 
and use that to calibrate our queries?



Cal. Layer (I): Supervised Learning of ETA offsets

ETA_OFFSET(s,d,t) ~ f(osrm_tt(s,d), distance, hour_of_day,   day_of_week,   hour_of_week,   zone(s),  zone(d))

free flow features Temporal features Spatial features

+5 17 12.5 8 2 32 ‘14’ ‘53’

+2 15 9.8 22 6 142 ‘03’ ‘12’

-7 32 11.2 7 1 7 ‘51’ ‘63’

... ... ... ... ... ... ... ...

Trips

Shortest 
path 

queries



Experimental evaluation

● Data
○ Qatar taxi fleet
○ 250k trips

● ML models
○ Trained on 200k trips
○ Tested on 50k trips

● Underlying algorithms
○ OSRM for shortest path
○ OSM map
○ Off-the-shelf kNN&Range queries

Shortest Path



● Precision: Number of items in 
KNN list that overlap with 
ground truth 
○ All very similar performance

● NDCG: A ranking quality 
measure that takes into 
account the order if items in 
the list

k-NN Queries



Thank You!
Do not forget to attend our demo


