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1 INTRODUCTION
Trajectory-based applications have acquired significant attention in

several areas, including transportation (e.g., mapping and routing,

traffic monitoring and forecasting), location-based service (e.g., rec-

ommendations), health (e.g., contact tracing), and urban planning.

However, building such applications is still cumbersome due to the

lack of unified frameworks to tackle the underlying trajectory prob-

lems, including trajectory similarity search, trajectory imputation,

classification, prediction, and simplification. Despite the fact that

all of these problems deal with the same trajectory data, each of

the proposed solutions in the literature (e.g., see [7, 10] for surveys)

is entirely designed to solve one problem of interest. This makes

it hard to have a unified efficient and practical framework that is

capable of supporting most (if not all) trajectory problems.

Motivated by the tremendous success of the BERT [3] deep

learning model (Bidirectional Encoder Representations from

Transformers) in solving various NLP tasks, and inspired by the

"Let’s Speak Trajectories" [5] vision that aims to have a BERT-like

model for a myriad of trajectory analysis operations, this paper pro-

poses TrajBERT, a holistic framework for an efficient and practical

solution for almost all fundamental trajectory analysis problems.

With TrajBERT, various trajectory analysis ideas will be just about

how to tune the model one way or another to support the required

analysis. This model leads to a long-waited-for full-fledged trajec-

tory data management system that does not only store and index

trajectory data, but natively supports all its data analysis needs.

TrajBERT outlines the architecture to realize that vision and

develops several components to address its challenges. TrajBERT

changes the core of the BERT system itself to make it deal with

spatial data in general and trajectory data in particular as first-class

citizens. Components in TrajBERT understand that spatial data is

special and support its unique characteristics. With TrajBERT, no

one needs to worry again about each specific trajectory analysis

operation.Whether it is trajectory imputation, similarity, clustering,
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Figure 1: TrajBERT Architecture

or whatever, TrajBERT is the system that researchers, developers,

and practitioners can deploy to get highly accurate results.

2 ARCHITECTURE
Figure 1 shows the architecture of TrajBERT, which has three

layers: first, the Data Layer, which preprocesses the input trajec-

tories to address data quality and availability challenges. Second,

the BERT-Like Layer, which receives the processed training trajec-

tories from the Data Layer and learns a unified trajectory model.

This layer is equipped with three components (highlighted in gray)

specifically designed to understand spatial characteristics during

the learning process, as we will explain shortly. These two layers

are also referred to as the pre-training step, which trains a power-

ful model that represents any input trajectory as a rich numerical

vector. Third, the Fine-Tuning Layer, which receives the numerical

representations from the BERT-Like Layer and tunes a simple model

for each analysis task (e.g., classification) to suit the given task.

Data Layer. This layer addresses the issues related to trajectory

data in terms of the noise and the small ratio of available training

trajectories to possible GPS points. It passes raw trajectory data

through: (A) Data Cleaning and Processing module that uses state-

of-the-art spatial data cleaning techniques [8] for noise and outlier

detection, consistency verification, missing value imputation, dedu-

plication, and other related data quality techniques. (B) Trajectory
Augmentationmodule that applies basic transformations to generate

new realistic and reasonable training data from existing ones, such

as changing GPS sampling rates, introducing controlled noise to

GPS points, etc. (C) Trajectory Simulation module, which learns the

overall distribution of an existing dataset and simulates/generates

completely new trajectories. This module uses the latest research

studies [6, 9] in this area as a means to enrich our training dataset.

The rich output of this layer is used by the BERT-Like Layer.
Fine-Tuning Layer. This layer trains one additional neural net-
work per trajectory analysis task, such as classification, imputation,

and prediction. Because most of the magic is encoded in the BERT-
Like model, this layer contains relatively simple neural networks

trained using a smaller dataset of labeled data for the needed task.
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BERT-Like Layer.This layer receives the cleaned trajectories from
the Data Layer and trains a deep neural network that can learn

from large trajectory datasets. Although this layer is inspired by

the general architecture of NLP BERT model, it has three crucial

components that address the unique characteristics of trajectories:

Spatial Tokenization, Spatial Embedding, and Spatial Attention.

2.1 Spatial Tokenization
This module encodes each trajectory as a sequence of tokens so

the BERT model can learn their relationships. This module should

satisfy two objectives: (I) minimzes the number of possible tokens,

and (II) accurately represents any original GPS point by a composi-

tion of one or more tokens. These two objectives mitigate the issue

of limited availability of training data by minimizing the number

of tokens while also allowing multiple GPS points to contribute to

multiple tokens. We explore several ideas for this module such as

partitioning the space into a set of fine-grained hexagons, using

Uber’s H3 Hexagonal Hierarchical Spatial Index [2], and then rep-

resenting all points within the same hexagon by its centroid or a

combination of a hexagon and a displacement. Alternatively, we

can have a hierarchical scheme or even an adaptive partitioning by

varying the size of the hexagons inversely proportional to the GPS

density, where small hexagons are used in high-density regions and

vice versa. Empirically, we used hexagon partitioning in one of our

experiments and found that it helped reduce the number of possible

tokens by about three orders of magnitude while still preserving

the accuracy due to the fine-grained nature of the hexagons.

2.2 Spatial Embedding
This module learns a numerical representation for each token and

propagates it through the remaining layers of the system. In ad-

dition to using BERT embedding module that pays attention to

the surrounding words (which applies to trajectories as well), we

customize it to utilize the spatial properties exclusively available to

spatial data but not words. For example, embeddings for two words

closely used with each other are is affected only by the example

sentences they appear in, and there is no other way to tell how

these two words relate to each other except by their usage in the

training data. However, embeddings of two spatial tokens is affected

by (I) the trajectories they appear in (similar to statements), and

in addition, (II) their spatial attributes such as their proximity to

each other/roads/and other geospatial features. These techniques

address the spatio-temporal constraints while also helping accel-

erate embedding learning and overcoming the challenges of the

small ratio of available training trajectories to possible GPS points.

2.3 Spatial Attention
This module learns howmuch each GPS point affects each other, not

only in terms of spatial proximity but also through the relationship

between key points in the trajectories. This help overcomes the

issue of long and unrelated consecutive trajectories and addresses

the spatial and temporal constraints.

3 DEPLOYMENT AND OPERATIONS
This section provides three examples of trajectory analysis tasks

that can be done using TrajBERT:

Trajectory Imputation is the process of densifying sparse tra-

jectories by inferring additional points between consecutive ones,

which is analogous to the "finding the missing word" problem in

NLP. Given a statement like, "My husky dog was — loudly", where

"—" represents a missing word, BERT can understand the context

and accurately find out that the missing word is "barking". Similarly,

TrajBERT is trained to accurately understand the trajectory and

find out a missing point between two consecutive points.

Trajectory Prediction is the task of predicting the next few points

of the current trajectory. Trajectory prediction can be seen as anal-

ogous to the "next sentence prediction" problem in NLP. Given a

sentence, a BERT model can find the most likely sentence that nat-

urally follows the given one. Similarly, TrajBERT is trained and

used to predict the next trajectory (next few points) for a given one.

TrajectoryClassification is the process of associating a trajectory

with one class from a predefined set of classes, e.g., modalities such

as biking, train, or car, which is analogous to the "text classification"
problem in NLP. Given a social media post (e.g., tweet) and a set of

categories (e.g., sports, politics), a BERTmodel can classify the given

tweet to fall in one of the given categories. Similarly, TrajBERT is

trained and fine-tuned to find the modality for any given trajectory.

4 PRELIMINARY RESULTS
To evaluate TrajBERT, we ran an initial experiment for trajectory

imputation of the GISCUP’17 dataset [1], which includes 5M GPS

points in San Francisco. We used a partial TrajBERT system that

only implements the Spatial Tokenizer module (see Figure 1), which

grouped the GPS points into 18K hexagons with 66 meters edge-

length. We train the BERT-Like Layer on 80% of the points and

keep 20% for testing, in which we down-sample the trajectories by

dropping three-quarters of the points of each trajectory and then

run TrajBERT to fill the gaps by imputing the missing points. Since

we know the ground truth trajectories, we measure the error by

computing the shortest Euclidean distance between the imputed

points and the actual trajectories, which is similar to what other

studies have used [4]. Themean andmedian distances were 37.9 and

38.9 meters, which represent a promising accuracy. These initial

results are strong indications of the system’s capability to achieve

higher accuracies for a myriad of trajectory analysis tasks.
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