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Abstract—Understanding the evolution and changes of digital
road networks and how it resembles the true physical road
network, have been a rich area of study within map analyzers,
urban planners, and transportation communities. The main focus
was to study OpenStreetMap (OSM) as the most commonly used
platform for worldwide digital road networks, and is deemed
even more accurate than commercial maps. However, all such
studies have been localized to small areas of interest, mainly
due to the large scale of the whole OSM road network. This
paper presents RASED; a publicly available scalable dashboard
to interactively monitor and analyze the evolution of all OSM
road network. Using RASED, map analyzers can query and
visualize various statistics about the road network daily changes
worldwide, which would give a better understanding of the status
of map quality and stability anywhere in the world. RASED
relies on daily and monthly offline precomputations, accessed
via a hierarchical temporal index structure. Experimental results
show that RASED queries are always supported in the order
of milliseconds, regardless of how large is the query temporal
window, which allows highly interactive map analysis.

I. INTRODUCTION

It used to be the case that accurate digital maps are only built

and sold by major industry, e.g., HERE [12] and TomTom [15].

However, the high cost and proprietary nature of commercial

maps along with their inherent inaccuracy due to not being

able to be frequently updated, made researchers, developers,

practitioners, and enterprises turn their attention towards open-

source maps [5], [14], [28], [38]. A prime example of such

maps is OpenStreetMap (OSM) [34], known as the Wikipedia

of maps. OSM is a platform for crowdsourcing-based maps

that has recently replaced commercial providers in various

sectors of academia, government, and industry [29], [31]. For

example, Amazon Logistics [1] is using OSM data in their

delivery programs [33], Apple Maps [3] have been using

OSM since iOS 6 [32], Facebook uses OSM as its backbone

mapping support [10], Lyft has described OSM as the ”Freshet

Map for Rideshare” [24], while Tesla [39] uses OSM for its

routing [40]. All these companies, and many others including

Mapbox, Microsoft, and Uber, are not only using OSM, but

are also extensively contributing to it [2], [9], [46].

Meanwhile, though there is extensive research in academia

and industry for developing efficient algorithms for a myriad of

road network queries (e.g., shortest path [21], [20], [44], [47],

range [6], [19], [43], [49], and k-NN [4], [7], [17], [37], [45]

queries), all algorithms have the implicit assumption that the
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underlying road network is accurate. Unfortunately, such an

assumption is not always true as road networks suffer from all

sorts of inaccuracy that significantly degrade the query result

accuracy. While this may be acceptable for casual users where

inaccuracy may only mean few minutes of delay, it is not the

case for governmental or commercial applications that support

map services for large numbers of users. For example, in USA,

99% of delivery company drivers say that they would be more

efficient if they had better maps [26]. Problems, identified by

those drivers, include: maps recommend longer routes and are

not updated. This wastes significant time that translates into

wages and high gas consumption, costing delivery companies

$6B annually [41]. This trend is just going to increase with the

increase of online shoppers and riders, which shifts traffic from

casual users to delivery companies and ride sharing services.

Though OSM is deemed more accurate and up-to-date

than commercial maps, its accuracy is still far from being

acceptable for high-demand map services [11], [23], [25], [27],

[42]. This has triggered several research efforts, mostly led

by the transportation community, to study the quality of the

underlying road network, represented by OSM (e.g., [13], [18],

[48]). Unfortunately, all such quality assessment studies have

very limited scope and scale, where the focus is only to study

a certain city or country road network with heavy manual

operations. Up to our knowledge, there is no comprehensive

global-scale study for the quality of OSM road network. This

is mainly due to its large scale, which makes researchers limit

their studies to small regions. For example, OSM road network

has more than 180M road segments and 2B nodes, which

account for 500GB worth of raw data.

This paper introduces RASED (https://rased.cs.umn.edu); a

publicly available scalable dashboard to interactively moni-

tor and analyze all OSM road network updates worldwide.

RASED is the first-ever attempt to quantify and visualize all

OSM worldwide changes on a daily basis, which gives an idea

about road network stability anywhere in the world. RASED

provides the necessary infrastructure immensely needed by

map analyzers to understand and assess the map quality. Using

RASED, map analyzers can query and visualize various map

statistics, including number and percentage of OSM updates

per country, comparison between countries, types of updated

roads, and temporal evolution of updates. All queries can have

several filters including temporal (e.g., time of update), spatial

(e.g., country or state), road types, and update types, which

would all give a better understanding of map status globally.
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RASED is a highly interactive system, where all its analysis

queries are supported in milliseconds allowing interactive vi-

sualization of the results. This makes RASED a convenient and

highly important dashboard for road network map analyzers

worldwide. To achieve its scalability and interactivity, the

RASED backend employs: (1) offline daily aggregation, where

the daily crawled OSM updates are analyzed offline to form all

sorts of required precomputations, stored in data cubes [16],

(2) hierarchical indexing, where the offline daily aggregation

cubes form a hierarchical index of weekly and monthly

updates to support analysis queries over longer time periods,

and (3) caching, where some of the daily/weekly/monthly data

cubes are prefetched in memory for faster access. All together,

achieve a milliseconds response time when querying all OSM

road network updates during the past 15 years.

The rest of this paper is organized as follows: Section II

gives a brief background about OSM. Section III gives RASED

system architecture. Section IV shows the queries supported by

RASED. RASED three main modules, namely, Data Collec-

tion, Indexing, and Querying are described in Sections V, VI,

and VII, respectively. Section VIII experimentally evaluates

RASED. The paper is concluded in Section IX.

II. BACKGROUND

OpenStreetMap (OSM) [34], launched in 2004, is a collab-

orative community project to create a free editable map of the

world. Known as the Wikipedia of maps, OSM has 8.5 Million

users, with 300K active users per year (users who made at least

one edit during the year) [36]. OSM supports 400+ public

free open-source OSM-based services [22], 80+ OSM-based

commercial services [8], and receives API requests at the rate

of 800 requests per second, for only one OSM data center [35].

This section gives a brief and necessary background about

OSM data and update representation.

A. OSM Conceptual Data Model

OSM data is all stored in one big XML file (Plant.osm)

presenting a massive list of elements, where each element is

one of the following three types: (1) Node, which represents

a certain point in the space with node identifier and its

latitude and longitude coordinates. Objects represented by

Nodes include intersection points, traffic lights, stop signs,

bus stations, and other Points of Interest (PoI). (2) Way, which

represents an ordered list of node identifiers making connected

road segments. (3) Relation, which represents the relations

between one or more elements of any type. Relations are used

to model complex roads that may contain multiple parts (e.g.,

multiple Ways). Currently, OSM Planet.osm file is 1.6TB, and

includes more than 7.5B nodes, 800M ways, and 9M relations.

B. OSM Map Updates

OSM is based on crowdsourcing where mappers voluntarily

upload geographical data for their surroundings, which results

in updating the map by creating new elements or modifying

existing ones. OSM stores such updates in three different sets

of files, described below:

Fig. 1. RASED Architecture

Diff (https://wiki.openstreetmap.org/wiki/Planet.osm/diffs.)

OSM creates such a file every minute, day, and hour such that

any created or modified element is added (and replicated) to

these three files. Only the element’s after-image is stored in

these files. Currently, OSM has 5M, 82K, and 3.5K minute,

hourly, and daily Diff files, respectively, with sizes that range

from a few megabytes to a few gigabytes per file.

Changesets (https://wiki.openstreetmap.org/wiki/Changeset.)

A set of files that provide metadata information about map

updates, e.g., user information, bounding box, comments,

and sources, described for each changeset; a term used to

represent all updates submitted by a particular user in one

session (maximum of 24 hours). OSM provides two sources

to download such data: (a) A single large file created every

week with a dump of all changesets in OSM lifetime, currently

of size 50GB. (2) A series of sequentially numbered small files

(tens of kilobytes), such that a new file is created for every

1K new changesets. Currently, OSM approximately creates a

new such file every minute and has created 5M files.

Full History (https://wiki.openstreetmap.org/wiki/Planet.osm/

full.) One huge file dumped every few weeks for entire OSM

updates. Unlike Diff files, the full history includes the previous

state of each update. Currently, this file size is 3+TB and has

12+ Billion elements of all versions.

III. RASED ARCHITECTURE

Figure 1 depicts the architecture of RASED, composed of

the following four main modules:

User Interface. This module presents the Web Graphical User

Interface (GUI) for RASED. It receives a set of interactive

online queries from RASED users and sends it to the Query
Execution module, which responds back with the answer in an

interactive way. The query result is then visualized in various

ways that allow map analyzers and domain experts to assess

OSM stability and changes anywhere in the world. We will not

discuss this module further in this paper. Interested readers can

refer to the live RASED system and interact with it to explore
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its friendly user interface at https://rased.cs.umn.edu and/or

refer to RASED published demo [30] for detailed screenshots

and description of RASED user interface.

Data Collection and Processing. This module is responsible

for daily and monthly crawling of the OSM updates and

preparing them for consumption by the Storage and Index-
ing module. The output of this module is a long list of

daily/monthly updates, termed UpdateList, where each update

has eight attributes: <ElementType, Date, Country, Latitude,
Longitude, RoadType, UpdateType, ChangesetID>. Element-
Type is the type of the updated element (i.e., node, way,

relation), Date, Country, Latitude, Longitude represent the date

and location of the update, RoadType is the type of the updated

road (e.g., highway, service, residential), UpdateType is the

type of the update (e.g., new road, update geometry, deletion),

ChangesetID is a reference to the changeset (Section II-B) that

contains this update. Details are in Section V.

Storage and Indexing. This module takes the output of the

Data Collection module as its input. Then it goes through two

main operations: (a) computing various sorts of precomputa-

tions in a form of data cubes [16] and using it to populate

its own hierarchical temporal index structure of daily, weekly,

monthly, and yearly precomputed statistics, and (b) dumping

the input to a traditional data warehouse indexed by both

ChangeSetID and a spatial index. Details are in Section VI.

Query Execution. This module receives RASED queries

submitted through the User Interface module, and answers

them in an interactive way. Internally, it employs two main

ideas: (a) Caching, where a selected set of aggregate data

cubes are cached in memory to efficiently support incoming

queries, and (b) Level optimization, where it smartly decides

which level(s) in the index hierarchy would be better exploited

for more efficient query support. Details are in Section VII.

IV. RASED QUERIES

This section describes the various queries supported by

RASED, presented in a SQL format. The most important

queries fall under the category of analysis queries, described

in Section IV-A. Update sample queries are described in

Section IV-B.

A. Analysis Queries

RASED analysis queries aim to provide detailed statistics

about road network updates. Examples of such queries include:

“finding the number or percentage of road network updates
over the last two years for a particular set of countries”,

“finding the number of updates for each road type for a certain
country over a certain time period”, and “compare the road
network evolution for a particular set of countries”. The results

of RASED analysis queries can be presented as either absolute

numbers or percentages of the country’s road network size,

and can be visualized as: (a) tabular format sorted on any

column, (b) various charts (bar, choropleth, time series), or

(c) a timelapse video showing the road network evolution.

Generally speaking, RASED analysis queries are aggregate

queries on a subset of the fields from the UpdateList relation,

namely, ElementType, Date, Country, RoadType, and Update-
Type, described in Section III. In particular, RASED queries

would have the following SQL signature:

SELECT
U.ElementType, U.Date, U.Country,
U.RoadType, U.UpdateType, COUNT(*)

FROM UpdateList U
WHERE

U.ElementType IN ListofElementTypes
AND U.Date BETWEEN date1 AND date2
AND U.Country IN ListofCountries
AND U.RoadType IN ListofRoadTypes
AND U.UpdateType IN ListofUpdateTypes

GROUP BY
U.ElementType, U.Date,
U.Country, U.RoadType, U.UpdateType

Below are few examples of RASED analysis queries and

their visualized answer, based on the above query signature:

Example 1: Country Analysis. “Find the number of newly
created or modified element types (node, way, relation) for
each country road network in 2021”: Out of the five attributes

in the query signature, we would need to group on only two

of them (Country and ElementType) as we need the answer

for each country and each element type. We have conditions

on both the Date and UpdateType. No group or constraints on

the fifth attribute, RoadType.

SELECT U.Country,U.ElementType,COUNT(*)
FROM UpdateList U
WHERE U.Date BETWEEN 2021-01-01

AND 2021-12-31
AND U.UpdateType IN [New,Update]

GROUP BY U.Country, U.ElementType

Figures 2 and 3 give RASED visualization for that query

in both bar chart and table formats, respectively.

Example 2: Road Type Analysis. “Find the number of newly
created or modified elements types (node, way, relation) for
each road type in USA since 2018”: We group on two attributes

(RoadType and ElementType) and have filters on the remaining

three attributes, Date, Country, and UpdateType.

SELECT U.RoadType,U.ElementType,COUNT(*)
FROM UpdateList U
WHERE U.Date AFTER 2018-01-01

AND U.Country = USA
AND U.UpdateType IN [New,Update]

GROUP BY U.RoadType, U.ElementType

Figure 4 gives RASED visualization for the query answer.

Example 3: Comparative Time-Series Analysis. “Compare
the percentage of daily changes in road network in Germany,
Singapore, and Qatar over 2020 and 2021”. We group and

have conditions on Country and Date. Nothing is needed for

the remaining three attributes.
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Fig. 2. Visualized Results for Country Analysis Example in Bar Chart Format

Fig. 3. Results for Country Analysis Example in Table Format

SELECT U.Country, U.Date, Percentage(*)
FROM UpdateList U
WHERE U.Date BETWEEN 2020-01-01

AND 2021-12-31
AND U.Country IN [Germany,

Singapore, Qatar]
GROUP BY U.Country, U.Date

Figure 5 gives RASED visualization for the query answer.

B. Sample Update Queries

RASED users may want to see a sample of the updates that

represent a given analysis query. Hence, RASED provides a

query interface that visualizes a sample of N (default = 100)

such updates on the map based on their latitude and longitude
information. RASED also uses the ChangesetID of the samples

to call a third-party application that visualizes the details of

the sample update.

V. DATA COLLECTION AND PROCESSING

This module crawls OSM update files, described in Sec-

tion II to produce the UpdateList of eight-attributes tuples:

<ElementType, Date, Country, Latitude, Longitude, RoadType,
UpdateType, ChangesetID>. One way to realize this module is

to deploy a monthly crawler of OSM full history file. However,

this would mean that RASED would have stale statistics, only

updated on a monthly basis. Hence, we opt to have daily

crawlers of the daily diff and changesets files, and use them

to construct as much as possible of the UpdateList. Then, use

Fig. 4. Visualized Results for Road Type Analysis Example

Fig. 5. Visualized Results for Comparative Time-Series Analysis Example

the monthly crawler to complete the missing information. This

ensures the accuracy of most RASED analysis queries.

Daily Crawler. The daily crawler mainly constructs seven

out of the eight attributes of the UpdateList. For the eighth

attribute (UpdateType), we can only infer whether an update

is a new or updated tuple, but would not know whether

this is an update for geometry or for metadata. Hence, we

would defer these details to the monthly crawler. For each

update record, four out of the seven attributes (in addition

to the UpdateType) are obtained in a straightforward way

from the diff files, namely, ElementType, Date, RoadType,

and ChangesetID attributes. The remaining three attributes,

Country, Latitude, Longitude, can only be easily obtained for

the node elements, but not for the way and relation elements.

To find out such information for each update tuple, we use its

ChangesetID to retrieve its bounding box from the changesets
file. We then map the bounding box to its country, and assign

latitude and longitude coordinates based on the center point

contained in the bounding box.

Monthly Crawler. The monthly crawler is made to go through

the full history file to compare every two consecutive versions

of an element and classify the update type as either create,

delete, metadata update, or geometry update. Newly created

elements will always be their first version, while deleted ones

are the last version. Geometry updates occur when there is

a change in the latitude/longitude attributes or the list of

members of a way or relation element, while metadata update

occurs by changing the element tags.
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VI. STORAGE AND INDEXING

The Storage and Indexing module takes the daily and

monthly UpdateList: <ElementType, Date, Country, Latitude,
Longitude, RoadType, UpdateType, ChangesetID>, produced

from the Data Collection module (Section V) as its input.

Then, it builds and maintains a storage infrastructure that can

be efficiently accessed by the Query Execution module (Sec-

tion VII) to support RASED queries. This section describes

such storage infrastructure per the type of supported queries.

A. Supporting Analysis Queries

To support RASED analysis queries (Section IV-A), we

build and maintain a hierarchical temporal index structure

that ensures that all queries will be supported with very few

I/Os. This gives an interactive user experience navigating

through various analysis queries. We describe below the index

hierarchy, index nodes, index size, and index maintenance.

Index Hierarchy. Figure 6 depicts the hierarchical temporal

index structure, employed by RASED. The index does not

index the OSM updates itself. Instead, it indexes precomputed

statistics (i.e., aggregates) about the OSM updates. These

precomputed statistics basically cover everything one could

ask for from any RASED analysis query. The index has

four levels that represent yearly, monthly, weekly, and daily

statistics with one dummy root node at the top that points to

the various yearly statistics. All statistics are presented in the

form of data cubes [16], each is stored in one-page index node.

Each yearly statistics is basically an aggregation of twelve

monthly statistics. In turn, the monthly statistics are aggregates

of four weekly and zero to three daily statistics, and so on.

Index Nodes. Each index node at any level is basically a four-

dimensional data cube [16], where the dimensions correspond

to four attributes from the UpdateList, namely, ElementType,

Country, RoadType, and UpdateType. In RASED, we have the

following possible values for each dimension: (1) Element-
Type. Three possible values, presenting node, way, and relation

elements. (2) Country. 300+ values presenting all countries

plus some selected zones of interest (e.g., continents and

US states). (3) RoadType. 150 possible road types, including

highway, residential, service, and truck roads. (4) Update-
Type. Four kinds of update operations, namely, newly created

roads/nodes, deleted roads/nodes, road geometry update, and

road metadata update. This means that each cube maintains

540,000 precomputed values. Each cube cell is basically the

count of OSM updates that happen in the time window of the

cube (year, month, week, day) and match the corresponding

value for each of the four dimensions.

Index Size. All nodes at all levels are of fixed size. With 540K

values per node, each node takes ∼4MB of storage, which

directly fits in one disk page. Considering all the OSM updates

since its inception in 2004, we have 6,000+ daily nodes, 850+

weekly nodes, 200+ monthly nodes, and 16 yearly nodes. So,

the total required storage is ∼28GB, which accommodate close

to 7,000 nodes with 4 billion aggregate values. Though we

store all index nodes on disk, the query executor caches some

of them in memory for faster processing.

Fig. 6. Hierarchical Temporal Index for Data Cubes

Index Maintenance with Daily Updates. Once the daily

UpdateList is received from the daily crawler process in

Section V, we scan all the updates (10∼20MB), and construct

a new data cube of 540,000 aggregate values as described

above. Notice that with the daily crawlers, we would have

only two possible values for the UpdateType dimension, so, in

fact, we would calculate only 270,000 aggregate values, while

putting zeros in the rest of the data cube cells. The cube is then

stored in a newly allocated disk page and linked to last day

cube. If this day is the end of the week, we construct the parent

weekly cube by reading the six previous cubes and summing

up their corresponding values to build a newly weekly cube.

We do so recursively for monthly and yearly cubes, if this day

is the end of the month and year, respectively. This process

is performed offline, and takes up to 30 minutes. The time is

mainly spent in scanning the UpdateList, and hence it depends

on the number of updates of each day. The process does not

consume much I/Os. Normally, we would need only one I/O

for daily cubes. If it is the end of the week/month/year, we

would need up to 8, 6, and 13 I/Os, respectively.

Index Maintenance with Monthly Updates. Once the

monthly UpdateList is received from the monthly crawler

process in Section V, we scan all the updates and reconstruct

all the daily and weekly data cubes in that month. The main

reason is that by now we have more detailed information about

the UpdateType with four possible values. This would be a bit

costly operation that would take a few hours due to the size

of the monthly UpdateList and the number of I/O operations.

Yet, the process is completely done offline, and copied to the

index structure only when done.

B. Supporting Sample Update Queries

To support sample update queries (Section IV-B), we dump

the whole UpdateList into a standard database table indexed

by: (a) a hash index on ChangesetID, which is needed to

retrieve a single update for RASED users to see the change

that took place for a specific object, and (b) a spatial index

on <Latitude, Longitude>, which is needed to retrieve the

sample updates located in a certain spatial region.
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VII. QUERY EXECUTION

The Query Execution module supports RASED queries

through efficient data retrieval from the index infrastructure

laid out by the Storage and Indexing module. This section

only focuses on supporting RASED analysis queries (Sec-

tion IV-A), as sample update queries are supported through

a straightforward index-based retrieval from a traditional

DBMS. RASED query execution goes through two main

phases: The first phase is mostly disk-based as it retrieves

the data cubes that include the answer for a given query.

The second phase is completely in-memory, where some

computations may still be needed to aggregate values within

the cube. For example, a query that asks about the number of

updates in each country in a certain time window t, would first

retrieve the data cubes that satisfy t. Since each cell in each

cube represents one value of the four dimensions, Country,

ElementType, RoadType, and UpdateType), we would then

need to aggregate the values across three dimensions as we are

only interested in the sum of updates for each country. The first

phase is actually the bottleneck of this module, as the second

phase is executed all in-memory. To reduce the overhead of the

first phase, we employ two optimization techniques, caching
(Section VII-A) and level optimization (section VII-B), geared

towards reducing the number of retrieved data cubes from disk.

A. Caching Strategy

The idea of caching is to preload into memory some of

the very recent data cubes, such that queries over recent

data would be either fully or partially answered from in-

memory cubes. This would significantly save from the query

response time as we reduce the number of disk retrieval

of data cubes. The rationale is that RASED is more likely

to receive inquiries about recent updates than older ones.

The challenge is from which index level we should pick

our preloaded data cubes. Hence, we formulate our caching

strategy as follows: Given N available memory slots and

the sets Y , M , W , D of yearly, monthly, weekly, and

daily cubes, we preload the following cubes into memory:

{D|D|−i}αNi=0 ∪ {W|W |−i}βNi=0 ∪ {M|M |−i}γNi=0 ∪ {Y|Y |−i}θNi=0

where α, β, γ, and θ has a total sum of 1 and present the

ratio of the N memory slots that will be allocated to each

daily, monthly, weekly, and yearly levels, respectively. Such

parameters present a trade-off between aggregation granularity

and time coverage. For example, higher α would cache more

daily details but less covered period, while higher γ and θ
would favor longer period queries.

B. Level Optimization

A given analysis query could be answered from a mix

of data cubes at different temporal levels. For example, an

aggregate query for the period Jan 1, 2022 to Feb 15, 2022 can

be answered using either: (a) 46 daily cubes, (b) six weekly

cubes (weeks of Jan 2, 9, 16, 23, 30, and Feb 6) and four

daily cubes (Jan 1 and Feb 13-15), or (c) one monthly cube

(January), one weekly cube (week of Feb 6), and eight daily

cubes (Feb 1 to 5 and 13-15). The objective of the level

optimization is to find the query plan that would retrieve from

disk the least number of data cubes, taking into consideration

that some of the data cubes are already in memory due to the

deployed caching strategy. For example, trying to reduce the

number of data cubes in the previous example would directly

advise using either plan (b) or plan (c) as both plans would

only require 10 data cubes. However, if the caching strategy

is set with a high value of α, then it could be that the last

60 daily cubes are in memory, and none of the other higher

temporal level cubes. Hence, plan (a) would be favored here as

it has zero disk access, while plans (b) and (c) would require

six and two disk cubes, respectively.

VIII. EXPERIMENT

This section provides experimental evaluation of RASED

to: (a) setup RASED parameters in terms of cache size and

number of index levels (Section VIII-A), (b) understand the

performance gain from employing caching and level opti-

mization strategies (Section VIII-B), and (c) compare RASED

overall performance against a traditional DBMS implementa-

tion (Section VIII-C). All experiments are done on an actual

deployment of RASED as a publicly available web service at:

https://rased.cs.umn.edu. For evaluation, we use the OSM full

history dump which contains more than 12 billion updates

with a total size of 3 TB of raw data. We run the whole

dataset through RASED Data Collection module to come up

with the full UpdateList as: <ElementType, Date, Country,
Latitude, Longitude, RoadType, UpdateType, ChangesetID>,

then bulk load the list into RASED temporal hierarchical index

structure. We focus our experiments only on analysis queries

(Section IV-A), as sample update queries (Section IV-B) are

executed in a traditional DBMS way, so, there is nothing much

to report about it. Our main performance measure is the query

response time, which needs to be in order of milliseconds

to ensure an interactive user experience of RASED analysis

queries. Each point reported in all performance experiments

is an average of 100 query execution. Unless mentioned

otherwise, each query retrieves only one data cube cell to focus

our performance results on the disk retrieval time, the default

cache size N is 2GB, with α, β, γ, and θ are set to 0.4, 0.35,

0.2, and 0.05 respectively. All experiments are done using an

Ubuntu system running on 8-core Intel(R) i7-4790 CPU @

3.60GHz and 32GB of memory.

A. Setting RASED Parameters

This experiment aims to set the parameters of RASED index

structure, namely the cache size and the number of levels in

the hierarchical index. Figure 7 gives the query response time

of RASED when varying the cache size from 128MB to 4GB,

which can fit from 32 to 1,000 data cubes. We perform this

experiment using various query loads with a time span of 1,

3, 6, and 12 months, which would reflect on the number of

data cubes needed to answer each query. Clearly, the larger

the cache size, the better the performance as higher numbers

of data cubes can be retrieved from memory. For each query

temporal window, there is a saturation point where increasing
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Fig. 9. Effect of Each Component in RASED

the cache size will not have significant enhancement, e.g.,

512MB, 1024MB, and 2048MB for the queries with 3, 6, and

12 months, respectively. Since RASED supports queries with

large time windows, we opt to choose 2048MB cache size in

RASED deployment. Figure 8 gives the size needed for each

additional hierarchy level for RASED index when varying the

covered period from one to 16 years, where a flat index means

one level of daily cubes, while extra levels are for weekly,

monthly, and yearly cubes. Apparently, the extra levels do not

add much beyond the storage already needed for the first daily

level. In particular, a four-levels index for a 16-years period

would only take 1.15 of storage taken by a flat index for the

same period. Hence, we opt to have our hierarchical index

with four levels.

B. RASED Query Execution Strategies

This section aims to understand the performance gain

from employing caching and level optimization strategies in

RASED. In particular, Figure 9 gives the performance of three

variants of RASED when varying the query time window from

one to 16 years. The first variant (RASED-F) is a one-level

flat index with neither caching nor level optimization. The

second variant (RASED-O) is the full RASED index with

level optimization, but no caching. The third variant is the

full RASED system with both level optimization and caching.

The more than two orders of magnitude performance gain from

RASED-F to RASED-O shows the impact of having the index

hierarchy, along with the level optimizer. Meanwhile, the order

of magnitude performance gain from RASED-O to RASED

shows the impact of deploying the caching strategy. Overall,

both index hierarchy and caching boost RASED performance

by three orders of magnitude.

C. Overall Performance

This section evaluates RASED against PostgreSQL imple-

mentation of the RASED analysis queries. To ensure fairness,

we set PostgreSQL buffer size to 2GB similar to RASED

cache size. Figure 10 gives the performance of RASED and

PostgreSQL when varying the query time window from one to

16 years. PostgreSQL constantly takes around 1000 seconds to

answer the analysis queries regardless of the query period or
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the aggregation size. This is mainly because it requires scan-

ning the whole data since the query involves multiple attributes

in the Group By clause. Meanwhile, RASED consistently

achieves five to six orders of magnitudes better performance,

reaching up to 10 milliseconds in its longest query period,

which is due to its powerful index structure.

IX. CONCLUSION

This paper presented RASED; a publicly available scalable

dashboard to interactively monitor and analyze all Open-

StreetMap (OSM) road network daily updates worldwide.

RASED supports a myriad of analysis queries that provide

detailed statistics about road network daily updates activity,

e.g., finding the number or percentage of road network updates

over the last two years for a particular set of countries, finding

the number of updates for each road type for a certain country

over a certain time period, and comparing the road network

evolution for a particular set of countries. RASED is equipped

with a hierarchical temporal index structure and caching

strategy that efficiently retrieve precomputed statistics needed

for analysis queries. Results of RASED queries are visualized

as either tabular format, various charts, or a timelapse video.

RASED is highly interactive with milliseconds response to

all its analysis queries. Realization of RASED has orders of

magnitudes better performance than realizing similar ideas

using traditional PostgreSQL DBMS.
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