
A Demonstration of RASED: A Scalable Dashboard
for Monitoring Road Network Updates in OSM

Mashaal Musleh, Mohamed F. Mokbel
Department of Computer Science and Engineering, University of Minnesota, MN, USA

{musle005, mokbel}@umn.edu

Abstract—Road network queries (e.g., shortest path, range,
and k-NN) hinge on the road network quality, which, un-
fortunately, suffer from all sorts of inaccuracy. Given that
OpenStreetMap (OSM) has been the de facto open-source map
for a myriad of widely used applications, this demo presents
RASED; a publicly available scalable dashboard to interactively
monitor and analyze billions of OSM updates worldwide. RASED
provides the necessary infrastructure that is immensely needed
by map analyzers to understand and assess the map quality for
anywhere in the world, which is a measure of the query accuracy.

I. INTRODUCTION

Though there is extensive research in academia and industry

for developing efficient algorithms for a myriad of road

network queries (e.g., shortest path [13], range [12], and k-

NN [10] queries), all algorithms have the implicit assumption

that the underlying map is accurate. Unfortunately, such an

assumption is not always true as maps suffer from all sorts of

inaccuracy that significantly degrade the query result accuracy,

no matter how efficient are the deployed algorithms [7]. In

practice, such map inaccuracy costs delivery companies in US

$6 Billion annually, which is mainly due to the inaccuracy of

their shortest path query result [11]. This triggered a whole

area of research of studying the quality of the underlying

maps as a means of understanding its impact on the query

result accuracy. Almost all of these studies focus on Open-

StreetMap (OSM) [8], known as the Wikipedia of maps, which

has recently replaced commercial maps in various sectors of

academia, government, and industry [1], [5], [6].

Unfortunately, all such quality assessment studies (e.g., [2],

[4], [14]), mostly initiated by the transportation community,

have very limited scope and scale, where the focus is only to

study a certain city or country road network with heavy manual

operations. Up to our knowledge, there is no comprehensive

global-scale study for the quality of OpenStreetMap (OSM).

The main reason is the huge size and continuous updates of

OSM, which force researchers to limit their studies to small

regions. For example, OSM has 12+ Billion update records

in its history, which accounts for around 3TB worth of raw

data, and is continuously increasing [9]. This makes it hard

for non-experts to interactively handle such amounts of data

and provide insightful quality assessment analysis.

This work is supported by the National Science Foundation, USA, under
Grant IIS-1907855.























 











 
















Fig. 1. RASED Architecture

In this demo, we introduce RASED 1; a publicly available

and scalable dashboard to interactively monitor and analyze all

OSM road network updates worldwide. RASED provides the

necessary infrastructure immensely needed by map analyzers

to understand and assess the map quality for anywhere in the

world. RASED tackles the scalability challenge through em-

ploying: (1) Aggregation, which exploits the historical property

of map updates and performs offline computations to produce

a giant high-dimensional data cube [3], (2) Slicing, which cuts

the resulted cube into smaller ones that are easily managed in

memory, (3) Hierarchical Indexing, which stores and retrieves

these slices efficiently from the disk, and (4) Caching, which

utilizes the system available memory by prefetching certain

data cubes from the disk. When combined, these techniques

provide highly interactive analysis for various sorts of queries

over the history of OSM updates since its inception in 2004.

Users of RASED, and conference audience, will be able to

interact live with the system to query and visualize various

statistics about the map, including number and percentage of

OSM updates for each country, comparison between countries,

types of updated roads, temporal evolution of the updates,

and map metadata availability. All queries to the dashboard

can have several filters including temporal ones (e.g., time of

update), spatial ones (e.g., country or state), map elements

(e.g., road type), and kind of updates, which would all give a

better understanding of map status globally.

1https://rased.cs.umn.edu

3146

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00284

II. RASED ARCHITECTURE

Figure 1 depicts the architecture of RASED, composed of

the following four main modules:

Data Collection and Processing. This module is responsible

for continuously crawling OSM updates and preparing them

for consumption. In particular, it crawls both the OSM daily

update file that only includes the list of updated items and

the OSM monthly full history that includes the previous state

of each single change over the month. Then, it deploys var-

ious preparation tasks, including filtering out irrelevant data,

merging multiple datasets, and extracting location information,

before sending the data to the Storage and Indexing module.

Storage and Indexing. This module takes the prepared data as

input, aggregates the data into data cubes [3], and organizes the

data in a hierarchical index structure for an efficient retrieval

by the Query Execution module. Details are in Section III.

Query Execution. This module receives a query from the

User Interface module and decides the best plan to execute it

through an interaction with the Storage and Indexing module.

Details are in Section IV.

User Interface. This module is user facing, where it receives

interactive queries form RASED users, sends them to the

Query Execution module, gets the results, and generates sev-

eral views that show the data from different perspectives. De-

tails will be shown through the demo scenarios in Section V.

III. STORAGE AND INDEXING

This module is responsible for efficiently storing and re-

trieving the prepared data through the following:

Precomputed Aggregation. To significantly reduce the re-

sponse time of RASED queries and make it more interactive,

all OSM updates are pre-aggregated in a giant five-dimensional

data cube [3], representing temporal (e.g., daily), spatial (e.g.,

country or region), road/feature type (e.g., residential, service,

motor way), map elements (e.g., node, way), and update

type (e.g., new, updated) dimensions. To support a variety

of analysis queries, RASED, so far maintains such cube for

6,000+ days, 300+ spatial regions include all countries and

some selected regions (e.g., US states), 150 road/feature types,

three map elements and four kinds of updates. All together

makes 3+ billion data cube which would account for 25+ GB.

Our aggregated pre-computations maintain such giant data

cube offline, with: (a) additions of 500+K daily new entries,

and (b) monthly updates of 12+ million entries based on the

monthly history updates from OSM.

Hierarchical Temporal Indexing. The increasingly large size

of our data cube makes it hard to store it entirely in memory.

Meanwhile, directly querying our disk-based data cube will

not make our analysis interactive enough for RASED users.

Hence, RASED maintains its own hierarchical temporal index

(depicted in Figure 2) on top of its data cube by: (a) Slicing the

data cube into daily slices, where each day, one slice is added,

and (b) Maintaining a hierarchical aggregate index of the daily

slices. Sliced daily cubes would be inefficient in answering

queries over extended periods as this would require loading a

large number of cubes from disk. To overcome this, we employ

  

  

  

 


























 





 

Fig. 2. Hierarchical Index for Data Cubes

a hierarchical index of four temporal levels: daily, weekly,

monthly, and yearly. The lower daily level is composed of

the daily cubes. The weekly level includes an aggregation of

all the seven cubes that are in the same week, and so on for

monthly and yearly cubes. It is important to note that all cubes

are of the same size, regardless of their temporal level.

Caching Strategy. Given the large number of cubes at all lev-

els of the hierarchical index, it becomes important to smartly

preload some of these cubes into memory, which would allow

for interactive analysis. Given N available memory slots and

the sets Y , M , W , and D of yearly, monthly, weekly, and

daily cubes, we preload the following cubes into memory:

{D|D|−i}αNi=0 ∪ {W|W |−i}βNi=0 ∪ {M|M |−i}γNi=0 ∪ {Y|Y |−i}θNi=0

where α, β, γ, and θ: (a) present the ratio of the N memory

slots that will be allocated to each temporal level, (b) have a

total sum of 1, and (c) provide a trade-off between aggregation

granularity and time coverage, e.g., higher α would cache

more details but less covered period. It is important to note

that cubes of each level are selected in reverse chronological

order as queries are more likely to be about recent updates.

IV. QUERY EXECUTION

This module is responsible for efficiently executing user

queries through the following two main operations:

Query Optimizer. The objective is to find the best query plan

that would minimize the number of accessed disk-based data

cube for a given user query. There may be alternative plans

that would partially or totally answer the query from memory

or disk cubes, and from several levels in the hierarchical index.

For example, a query about number of updates in USA on Oct

2021 can be answered from either: (a) 31 daily cubes, (b) four

weekly cubes and three daily ones, or (c) a single monthly

cube. The query optimizer would also take into account which

cubes are in memory to come up with the best query plan.

Query Processor. This query processor executes the query

plan generated by the query optimizer and loads the selected

cubes into memory in the form of Data Frames. The query

processor would then perform any remaining computations on

the fly using the data frame aggregation/filtration APIs. For

queries that request individual samples of map updates, we

translate them into SQL and send them to the standard DBMS

in the Storage module. Once all computations are done, the

query processor sends the results back to users.

3147

Fig. 3. User Interface of RASED (https://rased.cs.umn.edu)

Fig. 4. Country View

Fig. 5. Choropleth View

V. DEMO SCENARIOS

This section lists several scenarios through which con-

ference audience can interact with RASED to examine its

scalability, interactive and comprehensive analysis, and nav-

igate through all map updates worldwide. In particular, the

interactive analysis makes the system highly engaging where

audience would not feel about the huge scale of data that

RASED maintains. Among the numerous possible scenarios

that users can interact with RASED, we only list a few below:

Scenario 1: Scalable Query Execution. Figure 3 presents the

landing page of RASED where users can specify the following

query parameters: (1) temporal range to specify the dates of

interest, (2) road types of interest (e.g., road networks, bus or

cyclists routes), (3) type of OSM data (e.g., nodes, ways, or

relations), and (4) nature of updates (e.g., create or modify).

Furthermore, users can customize the view of the query results

using two main options: (a) absolute/percentage statistics,

which is crucial to see the amount of map updates relative

to road network size of each country, and (b) the geographical

regions to focus on, which could be the whole world or a

specific region such as Europe. Conference audience will be

able to see that no matter how large is the query temporal range

or spatial region, the query response and all visualizations

are highly interactive. This is mainly due to RASED efficient

storage and querying techniques.

Scenario 2: Statistics per Country. Figure 4 depicts the

Table view of all updates per country. Users can toggle this

view as Table or Chart, and can sort entries based on the

number/percentage of road changes per country. This helps

road network analyzers to understand which countries have

more changes in their road network either as an absolute

number or percentage, and according to the query parameters

(temporal range, road type, and update type) set in Scenario 1.

The Chart view of this scenario is categorized by both the

road type and nature of updates. Finally, users can use this

view as an additional parameter to filter the results of all other

scenarios. For example, one can click on one or more countries

in the Table view, which will limit all other scenarios to show

only the statistics of the selected countries.

Scenario 3: Time-lapse Choropleth View. Figure 5 gives a

bird view of all map updates according to the query parameters

and geographic region selected in Scenario 1. The view is

presented as a Choropleth chart, where users can run a time-

laps video of it, which helps in understanding the evolution of

road network updates through the temporal range of interest.

Scenario 4: Statistics per Road/Feature Type: Figure 6

shows the Chart view for the update activity for every single

road type (e.g., service and residential roads) for the query

parameters set in Scenario 1 and the countries selected in

Scenario 2. Users can toggle this view as Table or Chart, and

3148

Fig. 6. Road/Feature Types View

can sort entries based on various statistics. The Bar Chart view

is split into different colors indicating different map elements

and different types of updates. This helps map analyzers

understand which roads are being updated more than others in

which country. In the Table view, selecting one or more road

types will reflect on all other scenarios as filters.

Scenario 5: Comparison between Countries: Figure 7 shows

a scenario where users can compare the road network update

activities between multiple countries per certain query parame-

ters and road/features types. Users can continue to add/remove

countries or scroll to zoom in/out of the chart to inspect the

values at different points of the timeline. Users will be able to

witness the system scalability through the highly interactive

analysis over the large scale data maintained by RASED.

Scenario 6: Inspection of Sample Updates: With the Sample

View panel, users can retrieve a sample of map updates that

satisfy the parameters set in all other scenarios combined. The

samples are plotted on the map as pins showing their locations.

Clicking on any of these pins would show the “before” and

“after” status of this specific update.

Scenario 7: Metadata Completeness Check: Figure 8 depicts

a scenario where users can check the percentage of roads an-

notated with certain metadata (e.g., maximum speed, number

of lanes) in a tabular view, which can be sorted based on

any of the columns. Users can also select certain road types

(e.g., primary) or specific regions (e.g., Washington State)

from other views to evaluate the coverage percentage only

against these selected regions and road types.

REFERENCES

[1] Facebook Engineering. MaRS: How Facebook keeps maps current and
accurate. https://engineering.fb.com/2019/09/30/ml-applications/mars/.

[2] J.-F. Girres and G. Touya. Quality Assessment of the French Open-
StreetMap Dataset. Trans. in GIS, 2010.

[3] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data Cube: A
Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and
Sub-Total. In ICDE, 1996.

[4] K. T. Jacobs and S. W. Mitchell. OpenStreetMap Quality Assessment
using Unsupervised Machine Learning Methods. Trans. in GIS, 2020.

Fig. 7. Time Series View

Fig. 8. Metadata View

[5] Lyft Engineering. How Lyft discovered OSM is the Freshest Map
for Rideshare. https://eng.lyft.com/how-lyft-discovered-openstreetmap-
is-the-freshest-map-for-rideshare-a7a41bf92ec.

[6] Money Control. Uber may shun Google Maps for open source
ones. https://www.moneycontrol.com/news/business/uber-may-shun-
google-maps-for-open-source-ones-report-2764111.html.

[7] M. Musleh, S. Abbar, R. Stanojevic, and M. Mokbel. QARTA: An
ML-based System for Accurate Map Services. PVLDB, 2021.

[8] OpenStreetMap. http://www.openstreetmap.org/.
[9] OSM Full History. https://planet.openstreetmap.org/planet/full-history.

[10] D. Ouyang, D. Wen, L. Qin, L. Chang, Y. Zhang, and X. Lin. Progressive
Top-K Nearest Neighbors Search in Large Road Networks. In SIGMOD,
2020.

[11] Traffic Technology Today. Poor maps costing delivery companies US
$6bn annually, 2020. https://www.traffictechnologytoday.com/news/
mapping/poor-maps-costing-delivery-companies-us6bn-annually.html.

[12] H. Wang and R. Zimmermann. Processing of Continuous Location-
Based Range Queries on Moving Objects in Road Networks. TKDE,
2011.

[13] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou. Shortest
Path and Distance Queries on Road Networks: An Experimental Eval-
uation. PVLDB, 2012.

[14] H. Zhang and J. Malczewski. Accuracy Evaluation of the Canadian
OpenStreetMap Road Networks. International Journal of Geospatial
and Environmental Research, 5(2):1:1–1:14, 2018.

3149

